1 Recursion Equations

1.1 Concepts

1. A homogeneous recursion does not include any extra constants (e.g. $a_{n}=a_{n-1}+a_{n-2}$) and a nonhomogeneous recursion contains one (e.g. $a_{n}=a_{n-1}+4$). The order of a recursion equation is the "farthest" back the relation goes. For instance, the order of $a_{n}=a_{n-1}+a_{n-3}$ is 3 because we need the term 3 terms back $\left(a_{n-3}\right)$.
The general solution of a first order equation $a_{n}=a_{n-1}+d$ is $a_{n}=a_{0}+n d$.
In order to solve a linear homogeneous we can replace the equation with its characteristic polynomial. For instance, the characteristic polynomial of $a_{n}=2 a_{n-1}+a_{n-2}$ is $\lambda^{2}=$ $2 \lambda+1$. Then if $\lambda_{1}, \ldots, \lambda_{k}$ are roots of this polynomial, then the general form of the solution is $a_{n}=C_{1} \lambda_{1}^{n}+\cdots+C_{k} \lambda_{k}^{n}$.
The Δ operator takes in a series and spits out a new one. By definition, we have that $\Delta a_{n}=a_{n+1}-a_{n}$. This is done to change linear non-homogeneous equations into homogeneous ones.

1.2 Examples

2. Solve the recurrence relation $a_{n}=5 a_{n-1}-6 a_{n-2}$ with $a_{1}=5, a_{2}=13$.

Solution: This is a homogeneous equation and so we can solve this using the characteristic equation. The characteristic polynomial is $\lambda^{2}=5 \lambda-6$ or $\lambda^{2}-5 \lambda+6=$ $(\lambda-2)(\lambda-3)=0$. Thus, the general form of the solution has $a_{n}=c_{1} 2^{n}+c_{2} 3^{n}$. Now to solve for these constants, we plug in our initial conditions. We have that $a_{1}=2 c_{1}+3 c_{2}=5$ and $a_{2}=4 c_{1}+9 c_{2}=13$. Solving gives us $c_{1}=c_{2}=1$ so the solution is $a_{n}=2^{n}+3^{n}$.
3. Solve the recurrence relation $a_{n}=2 a_{n-1}+1$ with $a_{0}=0$.

Solution: This is a non-homogeneous equation but we can homogenize it by subtracting this from the previous term which is $a_{n-1}=2 a_{n-2}+1$. Doing so gives us $\Delta a_{n-1}=2 \Delta a_{n-2}$. We see that $a_{1}=1$ and hence $\Delta a_{0}=1$ which means that we can solve to get $\Delta a_{n}=2^{n}$. Thus, we have that $a_{n+1}-a_{n}=2^{n}$ or $a_{n+1}=a_{n}+2^{n}$. In general, we see that $a_{n}=2^{0}+2^{1}+\cdots+2^{n-1}=2^{n}-1$, which is the solution.

1.3 Problems

4. TRUE False We are not given an easy formula to plug in to solve linear nonhomogeneous recursion equations.
5. TRUE False If a_{n}, b_{n} are two solutions to a linear homogeneous equation, then $a_{n}+b_{n}$ is also an equation.

Solution: If our recurrence was $a_{n}=2 a_{n-1}$ for instance, then $\left(a_{n}+b_{n}\right)=\left(2 a_{n-1}+\right.$ $\left.2 b_{n-1}\right)=2\left(a_{n-1}+b_{n-1}\right)$ showing that their sum is also a solution.
6. TRUE False If a_{n} is a solution to a linear homogeneous equation, then $c a_{n}$ is also a solution for any constant c.
7. True FALSE If a_{n}, b_{n} are two solutions to a linear non-homogeneous equation, then $a_{n}+b_{n}$ is also an equation.

Solution: If our recurrence was $a_{n}=a_{n-1}+1$ for instance, then $a_{n}=n$ is a solution and $b_{n}=n$ is also a solution but $a_{n}+b_{n}=2 n$ is not.
8. True FALSE If a_{n} is a solution to a linear non-homogeneous equation, then $c a_{n}$ is also a solution for any constant c.

Solution: If our recurrence was $a_{n}=a_{n-1}+1$ for instance, then $a_{n}=n$ is a solution but $2 a_{n}=2 n$ is not.
9. Verify that $a_{n}=\binom{n}{5}$ is a solution to $a_{n}=\frac{n}{n-5} a_{n-1}$.

Solution: We plug in $\binom{n}{5}$ to get $\binom{n}{5} \stackrel{?}{=} \frac{n}{n-5}\binom{n-1}{5}=\frac{n}{n-5} \frac{(n-1)!}{5!(n-6)!}=\frac{n!}{5!(n-5)!}=\binom{n}{5}$ so this is indeed a solution.
10. Solve the recurrence relation $a_{n}=3 a_{n-1}+4 a_{n-2}$ with $a_{0}=3$ and $a_{1}=2$.

Solution: The characteristic polynomial is $\lambda^{2}-3 \lambda-4=(\lambda-4)(\lambda+1)=0$. Thus the general form is $a_{n}=c_{1} 4^{n}+c_{2}(-1)^{n}$. Plugging in our initial conditions gives $c_{1}+c_{2}=3$ and $4 c_{1}-c_{2}=2$ which gives $c_{1}=1$ and $c_{2}=2$. So the answer is $a_{n}=4^{n}-2 \cdot(-1)^{n}$.
11. Find A, B such that $a_{n}=A n+B$ is a solution to the recurrence relation $2 a_{n}=a_{n-1}+$ $2 a_{n-2}+n$.

Solution: We plug it in to get $2 A n+2 B=A(n-1)+B+2(A(n-2)+B)+n=$ $3 A n+n-5 A+3 B$. Hence $2 A=3 A+1$ and $A=-1$ while $2 B=-5 A+3 B$ so $B=5 A=-5$. Hence $a_{n}=-n-5$.

1.4 Extra Problems

12. Verify that $a_{n}=n^{2}$ is a solution to $a_{n}=a_{n-1}+2 n-1$.

Solution: We plug in n^{2} to get $n^{2} \stackrel{?}{=}(n-1)^{2}+2 n-1=n^{2}$ so this is indeed a solution.
13. Solve the recurrence relation $a_{n}=4 a_{n-1}+5 a_{n-2}$ with $a_{0}=3$ and $a_{1}=3$.

Solution: The characteristic polynomial is $\lambda^{2}-4 \lambda-5=(\lambda-5)(\lambda+1)=0$. Thus the general form is $a_{n}=c_{1} 5^{n}+c_{2}(-1)^{n}$. Plugging in our initial conditions gives $c_{1}+c_{2}=3$ and $5 c_{1}-c_{2}=3$ which gives $c_{1}=1$ and $c_{2}=2$. So the answer is $a_{n}=5^{n}-2 \cdot(-1)^{n}$.
14. Find A, B such that $a_{n}=A n+B$ is a solution to the recurrence relation $3 a_{n}=a_{n-1}+$ $3 a_{n-2}+n+5$.

Solution: We plug it in to get $3 A n+3 B=A(n-1)+B+3(A(n-2)+B)+n+5=$ $4 A n+n-7 A+4 B+5$. Hence $3 A=4 A+1$ and $A=-1$ while $3 B=-7 A+4 B+5$ so $B=7 A-5=-12$. Hence $a_{n}=-n-12$.

2 Differential Equations

2.1 Concepts

15. The order of a differential equation is the highest derivative that appears in the equation. For instance, the equation $y^{\prime \prime \prime}+\sqrt{y^{\prime}}=t^{2} y$ is third order.
A problem of the form $y^{\prime}=f(t, y)$ and $y(0)=y_{0}$ is called an initial value problem (IVP). There is a theorem that tells us when a solution to this problem exists. It says
that if f is continuous, then for every choice of y_{0}, the solution exists in a time interval $[0, T)$ for some $0<T \leq \infty$. But, the solution may not exist everywhere and it is not guaranteed to be unique.
If in addition f satisfies the Lipschitz condition (that $|f(t, y)-f(t, z)| \leq C|y-z|$) for some constant C and all y, z), then the solution is unique and exists for all $t \geq 0$. For instance $f(y)=y^{2}$ does not satisfy the Lipschitz condition because there is no constant such that $\left|y^{2}-0^{2}\right| \leq C|y-0|=C|y|$ for all y. Effectively this is saying that f does not grow or shrink faster than a linear function.

2.2 Examples

16. Bacteria grows at a rate $N^{\prime}=0.05 N$ where time is measured in hours. If initially there were 1000 cells, how many cells will there be in 10 hours?

Solution: We guess that a solution is of the form $C e^{r t}$. Solving gives $r C e^{r t}=$ $0.05 C e^{r t}$ and hence $r=0.05$ so $N=C e^{0.05 t}$. We know that $N(0)=C e^{0}=C=1000$. So in 10 hours, we have $N(10)=1000 e^{0.05(10)}=1000 e^{0.5}$ cells.

2.3 Problems

17. TRUE False For an IVP, the function f may be continuous everywhere but still the solution does not exist everywhere.
18. True FALSE We guaranteed that the IVP $y^{\prime}=t y^{2}, y(0)=0$ has a unique solution.

Solution: In this case, $f(t, y)=t y^{2}$ which grows faster in the y variable than a linear function. So, the solution will blow up and we are not guaranteed that it is unique.
19. TRUE False We guaranteed that the IVP $y^{\prime}=t^{2} y, y(0)=0$ has a unique solution.

Solution: In this case, $f(t, y)=t^{2} y$ which is linear in y. So, the solution will be unique.
20. Solve the IVP $y^{\prime}=t e^{t}$ with $y(0)=0$.

Solution: We solve by integrating $t e^{t}$. We do this using integration by parts. Let $u=t$ and $d v=e^{t} d t$ so $d u=d t$ and $v=e^{t}$. Integrating gives $\int t e^{t} d t=t e^{t}-\int e^{t} d t=$ $t e^{t}-e^{t}+C$. Now we solve for our initial condition that $y(0)=0 e^{0}-e^{0}+C=C-1=0$ so $C=1$. Thus the solution is $t e^{t}-e^{t}+1$.
21. Verify that $y=t e^{t}+1$ is a solution to $y^{\prime \prime}-2 y^{\prime}=1-y$.

Solution: We plug this into the equation $y^{\prime \prime}-2 y^{\prime}=1-y$ to get $\left(t e^{t}+2 e^{t}\right)-2\left(t e^{t}+\right.$ $\left.e^{t}\right) \stackrel{?}{=} 1-\left(t e^{t}+1\right)=-t e^{t}$ and $L H S=-t e^{t}+2 e^{t}-2 e^{t}=-t e^{t}=R H S$ so the sides agree and this is a solution.

2.4 Extra Problems

22. Solve the IVP $y^{\prime}=\frac{1}{t \ln t}$ with $y(e)=0$.

Solution: We find the integral using u substitution. Let $u=\ln t$ and then $y=$ $\int \frac{1}{t \ln t} d t=\frac{d u}{u}=\ln |u|+C+\ln (\ln t)+C$. Plug in our initial condition that $y(e)=0$ to get $\ln (\ln e)+C=\ln 1+C=C=0$ so $y=\ln (\ln t)$ is our solution.
23. Verify that $y=2 e^{1 /(2 t)}$ is a solution to $2 t^{2} y^{\prime}+y=0$.

Solution: Plug this in to get $2 t^{2} y^{\prime}+y$ to get $2 t^{2}\left(2 \frac{-2}{(2 t)^{2}} e^{1 /(2 t)}\right)+2 e^{1 /(2 t)}=-2 e^{1 /(2 t)}+$ $2 e^{1 /(2 t)}=0$ so this is a solution.

3 True/False Review

24. True FALSE To find $p(B \mid A)$, it suffices to know just $p(A \mid B)$ and how to apply Bayes' Theorem.

Solution: We also need to know $P(B)$ and $P(A \mid \bar{B})$.
25. TRUE False Among other things, the proof of Bayes' Theorem for finding $p(B \mid A)$ depends on being able to split the probability $p(A)$ as a sum probabilities $p(A \cap B)$ and $p(A \cap \bar{B})$, and then further rewrite these as products of certain other probabilities.
26. True FALSE The extra shortcut formula $p(B \mid A)=\frac{1}{1+\frac{p(A \mid \bar{B} \cdot p(\bar{B})}{p(A \mid B) \cdot p(B)}}$ works in one particular case when the standard formula for $p(B \mid A)$ in Bayes' Theorem fails.

Solution: It is the opposite. The standard formula works in a case when this shortcut does not, which is when $P(A \cap B)=0$.
27. True FALSE If a winner in a bicycle race tests positive for steroids, and this test has a very high "True Positive" rate and hence a very low "False positive" rate, then we should take away the winning cup from the athlete because it is extremely likely that he/she has used steroids.

Solution: The actual answer could be a lot different from just the true positive rate.
28. TRUE False Error 1 in Hypothesis Testing (reject the null-hypothesis that the person is healthy when the person is actually healthy) is analogous to Testing positive for steroids (event T), yet not having used steroids (event \bar{S}); in other words, the significance α corresponds to $p(T \cap \bar{S})$.
29. TRUE False Error 2 in Hypothesis Testing (keep the null-hypothesis that the person is healthy but the person is, in fact, sick) is analogous to Testing negative for steroids (event \bar{T}), yet having used steroids (event S); in other words, the power of a test $1-\beta$ corresponds to $1-p(\bar{T} \cap S)$.
30. True FALSE To partition a set Ω into a disjoint union of subsets $B_{1}, B_{2}, \ldots, B_{n}$, means that the intersection of these sets is empty; i.e., $B_{1} \cap B_{2} \cap \cdots \cap B_{n}=$ \emptyset.

Solution: We need the pairwise intersections $B_{i} \cap B_{j}$ to be empty as well.
31. True FALSE Two disjoint events could be independent, but two independent events can never be disjoint.

Solution: If one event is the empty set, then it is disjoint and independent with any other event.
32. True FALSE If a fair coin comes up Heads six times in a row, it is more likely that it will come up Tails than Heads on the 7th flip.

Solution: If it is fair, the flips are independent.
33. TRUE False Contrary to how we may use the word "dependent" in everyday life; e.g., event A could be dependent on event B, yet event B may not be dependent on event A; in math "dependent" is a symmetric relation; i.e., A is dependent with B if and only B is dependent with A.
34. TRUE False If A and B are independent events, their complements are also bound to be independent, and to prove this we need a general argument since an example is not sufficient here.
35. True FALSE If A and B are independent events, \bar{A} and B may fail to be independent, but to prove this we need just one counterexample, not a general proof.

Solution: They are also independent.
36. True FALSE If any pair of events among $A_{1}, A_{2}, \ldots, A_{n}$ are independent, then all events are independent.
37. True FALSE A random variable (RV) on a probability space (Ω, P) is a function $X: \Omega \rightarrow \mathbb{R}$ that satisfies certain rules and is related to the probability function P.

Solution: A RV is any function to \mathbb{R} and not at all related to the probability function P. The PMF of this RV is related to P though.
38. TRUE False A RV X could be the only source of data for an outcome space Ω and hence could be very useful in understanding better X 's domain.

Solution: One reason we introduced random variables is because it is sometimes hard to understand all of Ω and we can only look at it through X.

